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Abstract

Underwater Image Enhancement (UIE) is a difficult and
actively studied research problem in computer vision. Un-
derwater images succumb to backscattering and attenua-
tion effects that vary based on the depth from the surface,
the distance from the camera, and the frequency of light
that is being detected [1]. Current methods for UIE of-
ten assume they have access to pairs of ground truth raw-
restored image data that can make data collection cumber-
some. In this report, our team will first analyze our ini-
tial method for training a diffusion model from scratch by
implicitly modeling underwater parameters. We will then
outline our more consistent method of leveraging the distri-
butional modeling capabilities of pretrained diffusion mod-
els to restore underwater images without the need for raw-
restored image pairs. The overall goal of this work is to
dehaze and color-correct underwater images such that they
are conducive to above-water SLAM and scene reconstruc-
tion pipelines (i.e. ORBSLAM3 [2], COLMAP [3]). To test
the effectiveness of our pipeline, a comparative analysis be-
tween our proposed system and simplistic color-distribution
shifting is conducted. Fig. 1 shows example UIE output of
our method.

1. Introduction

Underwater localization and mapping are challenges in
active marine robotics research. Historical deep-water ship-
wrecks are an important part of history, however, many of
them are slowly deteriorating due to human interference,
saltwater erosion, and extreme weather conditions [4]. Cre-
ating accurate models of these underwater landmarks will
be extremely valuable for future historians and scientists.
Unfortunately, the underwater domain provides numerous
challenges that prevent the adoption of out-of-water algo-
rithms (such as traditional and state-of-the-art localization
and mapping systems) from operating effectively.

Vision-based SLAM systems (i.e. ORBSLAM3 [2]) suf-
fer when using images taken deep underwater. Underwater
images often suffer from color degradation, distortion, and
haze caused by various properties of light. Light refraction

Figure 1. Example of our proposed Wreck-tify image enhancement
applied to two underwater scenes

mainly contributes to underwater image distortion while
attenuation and back-scatter cause color degradation and
haze. Suspended particles in the water also make the over-
all image increasingly blurry. These properties decrease the
effectiveness of feature detection and matching algorithms
in visual SLAM, which can be seen in Fig. 2 depicting the
sparsity of ORB features detected in a shipwreck dataset.

Figure 2. Sparse orb features detected for an underwater ship-
wreck image

To overcome these challenges, our team proposes to
guide the diffusion process of a diffusion model pretrained
on only above-water outdoor scenes. By paying attention
to globally consistent water parameters and a model of light
attenuation and backscattering, our method can consistently
dehaze and recolor images across multiple viewpoints of the
same scene such that the output is conducive to downstream
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Figure 3. Wreck-tify architecture. The initialization step begins by producing a predicted depth-map given the raw underwater image using
the off-the-shelf UDepth network [5]. Next, a frozen diffusion model which was pre-trained on outdoor scenes is used to iteratively denoise
the input sample. The underwater image formation model [6] and a reconstruction loss are employed to guide the diffusion model to create
an above-water counterpart to the underwater input image.

above-water SLAM feature extractors. This technique of
employing image enhancement algorithms for underwater
images has been explored before [7], however, the use of
effective diffusion models for image preprocessing as input
to SLAM algorithms has been unexplored and is the focus
of our work.

In this paper, our team will first analyze and assess the
limitations of our initial method: training a diffusion model
from scratch using pairs of underwater and restored im-
ages. We will then outline our proposed method, Wreck-
tify, that leverages the distributional modeling capabilities
of pre-trained diffusion models to restore underwater im-
ages without ground-truth restored image pairs. The high-
level architecture for Wreck-tify is presented in Fig. 3.

2. Related Work

In this section, related work in the area of Underwa-
ter Image Enhancement (UIE) will be overviewed. Addi-
tionally, some recent advances and background in diffusion
model techniques will be discussed as our methods build on
these ideas.

2.1. Underwater Image Enhancement

We identify two main categories of UIE in recent work:
simple color compensation algorithms and methods that
model water effects.

2.1.1 Naive Color Compensation and the Gray World

The first class of UIE methods are simple color compen-
sation algorithms like Color Channel Compensation (3C)
[8] and Contrast Limited Adaptive Histogram Equalization
(CLAHE) [9]. In more traditional image color correction
pipelines, oftentimes the complete loss of color channels
can lead to adverse effects like image artifacts and color dis-
tribution shifts in enhanced images. The 3C method works
by reconstructing lost color channels by using an “opponent
color space” like LAB. This works by blurring the image
and subtracting the local mean from each opponent color
pixel to reshift the mean color back to an assumed “neutral”
color across most natural scenes. Similarly, CLAHE oper-
ates by shifting color distributions of local image patches
and limits the values such that it amplifies the contrast of
different sections in an image.

Figure 4. Example of 3C color compensation algorithm for under-
water scenes
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These methods are simple yet effective solutions to col-
orize images that have severely non-uniform color spectrum
distributions captured in low-light, hazy, or underwater con-
ditions. Fig. 4 shows an example of a colorized image from
the aforementioned 3C algorithm in low-light underwater
conditions.

2.1.2 Modeling Water Effects

In recent years, there has been a growing interest in devel-
oping methods that explicitly model the physical properties
of underwater environments. This class of algorithms can
further be divided into two based on the process of model-
ing those water effects.

Coefficient Estimation Techniques: Berman et al.
introduced a method for estimating water transmission in
their paper [10]. By incorporating multiple spectral profiles
of different water types and estimating just two additional
global parameters—the attenuation ratios of blue-red and
blue-green color channels—the method simplifies the prob-
lem to single-image dehazing. Importantly, when the water
type is unknown, the approach evaluates various parame-
ters from a library of water types, automatically selecting
the best result based on color distribution. Fig. 5 shows
how the overall pipeline works. The authors also created a
dataset, SQUID, using this methodology that is discussed
later in our paper.

Figure 5. The proposed color restoration and transmission estima-
tion method. First, the veiling-light is estimated. Then, the trans-
mission estimation and color restoration are repeated for multiple
water types that have different optical characteristics. Finally, the
best result is selected automatically based on the gray-world as-
sumption.

GAN Techniques: Newer UIE techniques have relied
on using generative adversarial networks (GANs) to train
their algorithms. One notable advancement in this direction
is the WaterGAN framework proposed by Li et al. [11]. As
shown in Fig. 6, WaterGAN utilizes a GAN to learn the
mapping between underwater images and their correspond-
ing enhanced versions, simulating the process of underwa-
ter image degradation and restoration. By training on large
datasets of paired GAN-generated underwater images and
their above water counterparts, an image restoration net-
work can effectively generate enhancements that mitigate
the effects of scattering, absorption, and turbulence com-
monly observed in underwater scenes.

Figure 6. Flowchart displaying both the WaterGAN and image
restoration network. WaterGAN takes input in-air RGB-D and a
sample set of underwater images and outputs synthetic underwa-
ter images aligned with the in-air RGB-D. The image restoration
network uses this aligned data for training.

2.2. Diffusion Models

In the past few years, the image-generation, editing, and
restoration capabilities of Denoising Diffusion Probabilistic
Models (DDPMs) [12] have been very inspiring. We be-
lieve that the advances in this area can be readily applied to
the underwater image enhancement problem. Recently, im-
age restoration tasks in above-water domains have enjoyed
drastic quality improvements through the use of DDPMs.
These “diffusion models” have been shown to significantly
outperform GAN based counterparts at image restoration
and conditional generation tasks [13, 14].

In general, diffusion models work in two stages. First,
the forward process iteratively adds noise to images drawn
from particular distribution. Next, the reverse process is
learned to iteratively “de-noise” these arbitrary images, al-
lowing one to sample from the learned image distribution.
Recent techniques have proposed guiding or conditioning
the output of these image samples in different ways [15,
16]. The following sections describe these processes more
in detail.

2.2.1 Forward Diffusion Process

Following [12] one can define a forward Markov chain
which adds increasing Gaussian noise over T timesteps to
an image in the desired distribution, x0, until it becomes
a completely noisy image xT . The following distribution,
q(xt|xt−1) depicts this process where t is the iteration step
and βt ∈ [0, 1] corresponds to the variance of the Gaussian
noise at each timestep. This variance typically decreases
linearly according to the timestep.

q(xt|xt−1) = N (xt|
√

1− βxt−1, βtI) (1)

This formulation can actually be simplified such that the
value of xt can be sampled in closed form at any timestep
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given a linearly decreasing βt shown in the below equation
where γt =

∏t
n=1(1− βt) and ϵ ∼ N (0, I) follows a stan-

dard normal distribution [12]. This is due to the fact that a
multiplication of 2 Gaussians is still Gaussian. This simpli-
cation allows sampling times to be greatly improved.

xt =
√
γtx0 +

√
1− γtϵ (2)

2.2.2 Reverse Diffusion Process

In the diffusion reverse process, the model is defined as
the Markov process that is opposite of the forward process.
This is modeled by the following distribution pθ(xt−1|xt, c)
where µθ(xt, c, t) represents the mean of the distribution,
σ2
t is the variance, θ represents the model parameters, and c

represents the optional conditioning image.

pθ(xt−1|xt, c) = N (xt−1|µθ(xt, c, t), σ
2
t I) (3)

The reverse process takes T iterative refinement steps to
progressively “denoise” a noisy image until it eventually re-
sembles images similar to the training distribution. This
works by using the conditional distribution pθ(xt−1|xt, c),
which is learned by the neural network model fθ, to es-
timate the added forward process noise at the previous
timestep. During training, one can use the denoising model
fθ to estimate the values of ϵ. The inputs to fθ during train-
ing are the noisy image xt (generated from the forward pro-
cess), a conditioning image c, and the current timestep t.
Given this definition, one can train fθ to produce quality
estimates of ϵ using the following loss function.

Loss = E(x,y)E(ϵ,t)

∥∥∥∥∥∥∥fθ(
√
γtx0 +

√
1− γtϵ︸ ︷︷ ︸

xt

, c, t)− ϵ

∥∥∥∥∥∥∥
1

1
(4)

2.2.3 Conditional and Guided Diffusion

Recent research in generative diffusion models has estab-
lished ways of guiding or conditioning the generated out-
put on various inputs. For example, the Super Resolution
3 (SR3) model established a simple image conditioning
scheme for diffusion models [14]. The authors found that
in the reverse-diffusion process, by modeling fθ as a simple
U-Net, one can condition the diffusion by simply concate-
nating the conditioning image to the input “noisy” image at
each timestep.

Another option for conditionally generating in-
distribution observations from a diffusion model is through
guidance. Guidance techniques such as those presented
in [17, 18] offer the benefit of not modifying the training

procedure of the diffusion model and only affecting the
inference procedure. Oftentimes, these works utilize some
conditioning factor (such as an image reconstruction loss
for example) to guide the next sample for the diffusion
model to de-noise. Overall, we found that guidance-based
techniques applied to large pre-trained diffusion models
are the most effective way to achieve conditional image
generation without costly training.

3. Technical Approach
In this section, we will discuss both of our attempts at

creating a diffusion model for underwater image correction.

3.1. Attempt 1: Training a Model from Scratch

Our first attempt at performing this UIE task involved
training a diffusion model on a dataset containing underwa-
ter images paired with reference “corrected” images. For
this task, our team used the LSUI dataset [19] depicted in
Fig. 7. This dataset contains roughly 5000 image pairs
with varying depths, lighting conditions, and water types.
This dataset was created with a transformer-based method.
Therefore the “corrected” images should not be interpreted
as true-color ground truth but instead as “enhanced refer-
ence images.” Given this dataset, we can define our model’s
task as taking an underwater image as input and producing
an image similar to the LSUI “reference” images as output.

Figure 7. LSUI dataset example images

In determining how to formulate our diffusion model for
this task, we drew inspiration from the super-resolution dif-
fusion model (SR3) [14] that shows how diffusion can be
conditioned on input images by simply concatenating the
conditioned image onto the partially denoised image xt at
timestep t of the denoising process. Our team used the pre-
processed underwater image after running 3C color com-
pensation to provide a condition with a more above-water
color distribution. This high-level structure is depicted in
Fig. 8.

In practice, we implement the reverse diffusion step, fθ,
using a simple U-Net by concatenating xt and ct as seen in
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Figure 8. Our SR3-based diffusion model including 3C prepro-
cessing and conditional diffusion model generation.

Fig. 9. As seen, the value of ct is determined by performing
the procedure defined in 3C [8] on a raw underwater image.
Our intuition was that this mean-color-shifted image would
guide the diffusion model to produce reasonable colors as
well as align the output image at each timestep with the con-
tours, shapes, and gradients defined in the raw image. The
model was also given access to the specific timestep, t, al-
lowing it to learn the scheduling routine for γt and therefore
better predict the noise. At the end of training, our function
fθ should accurately predict noise in a noisy input image.
Then, using a deterministic function, this predicted noise
can be iteratively removed from the image over T denoising
iterations following the procedure in SR3 [14].

Figure 9. Description of the U-Net reverse diffusion model. 3C is
applied to the raw underwater image to create c which is concate-
nated to a noisy reference image, xt, to guide the denoising of the
underwater reference image.

After getting some preliminary results from this method
our team noticed a few large issues when applying this
method to downstream SLAM systems. First, as seen in
Fig. 8, the output of our diffusion model actually varies
for a given input underwater image. We believe that this is
largely due to the fact that the act of performing 3C color
compensation looses valuable information about the true
distribution of color in the image. We noticed that this sim-
ple fact actually destroys the usefulness of this pipeline as
an input to SLAM systems because different viewpoints of
the same scene (at potentially variable depths) will produce
drastically different color profiles – making feature match-

ing quite difficult. Additionally, another limitation of this
method is the amount of time that it takes to train. Our team
found that in order to produce visually pleasing images us-
ing this method we had to train the diffusion model for over
30 hours. Finally, another major limitation stems from the
severe shortage of raw-restored image pairs in readily avail-
able datasets. These limitations inspired our team to design
the proposed Wreck-tify model, described in the next sec-
tion.

3.2. Attempt 2: The Wreck-tify Pipeline

Building off of the ideas and limitations from the previ-
ous SR3-based diffusion method for UIE, we propose the
Wreck-tify pipeline. The model diagram for this new ar-
chitecture is shown in Fig. 3. This architecture contains a
few important design principles. First, we chose to utilize
a large (2GB) pre-trained image diffusion network trained
unconditionally on a large number of outdoor scene datasets
[20]. By training the diffusion model on these datasets the
model is effectively learning a large prior distribution of
what in-air outdoor scenes look like (i.e. their color dis-
tributions, the fact that color is not dependent on distance,
etc). The main idea of the Wreck-tify method is to guide
the test-time diffusion of this model so that it produces an
image that is in the “in-air” distribution but still contains
the same information contained in the original underwater
image.

As seen in Fig. 3, this guidance is achieved by apply-
ing attenuation and back-scattering effects to the noisy “cor-
rected” image at every step of the denoising process. This
degradation process is defined using the underwater image
formation model per channel for each pixel [6] using Eq.
5). Here, Ipred is the in-air image, D is the depth from the
camera, ϕ∞ is the color of the water at infinity, and ϕα and
ϕβ are the attenuation and back-scatter coefficients respec-
tively.

IUW (Ipred, D, ϕ) = Iprede
−ϕαD + ϕ∞(1− e−ϕβD) (5)

This underwater-degraded prediction, IUW , is directly
compared to ground truth underwater image Iraw that was
the initial input to the model. Following [20], we use a dif-
fusion model library to compute the reconstruction loss of
the underwater image and use this information to guide the
next denoising step.

Importantly, the above water degradation step only
works if there exists an accurate depth estimation for each
pixel in the image. For this task, we use an off-the-shelf
underwater depth prediction network named UDepth [5].
As seen in Fig. 9, this model directly operates on the in-
put monocular underwater image and outputs a normalized
depth map. Another important set of parameters that need
to be correctly initialized in this framework are the water
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parameters ϕ = {ϕα, ϕβ , ϕ∞} defined uniquely for each
channel. As a simplification of our method, we assume that
these parameters are known a-priori. In practice, one can
iteratively refine these parameters by hand until reasonable
diffusion results are attained.

When applying this system to multiple frames of a video
we have the assumption that the water parameters do not
change across the different images. We have found that this
simple physics-based assumption enforces temporal UIE
consistency such that downstream SLAM systems can ac-
curately retrieve and match ORB features from images with
varying viewpoints. Importantly, we also find that even if
the water parameters are incorrect for a particular scene,
the diffusion outputs are still temporally consistent in their
color distribution. One obvious limitation of this assump-
tion, however, is that if the path of the underwater vehicle
involves drastic changes in the depth of the water column,
the assumption that the water parameters are constant will
not hold. For more discussion and results regarding the tem-
poral consistency of this algorithm and the importance of
the water parameters please see Section 4.

3.3. Downstream Visual SLAM

Traditionally, visual SLAM systems do not work very
well underwater [21]. This is likely due to poor image qual-
ity resulting in a lack of features and inaccurate depth mea-
surements. By first performing underwater image enhance-
ment, we aim to be able to extract more visual features un-
derwater. To compare the effectiveness of our method, our
team wrote a simple ORB-feature matcher that can be used
to establish a sense of the quality of our processed images.
Due to the slow inference of our methods, running the entire
SLAM pipeline was deemed infeasible for this project.

4. Evaluation and Results

Our team evaluated our method at two distinct stages in
the Wreck-tify pipeline. First, we evaluate the single-image
quality both qualitatively and quantitatively using image
quality metrics. Second, groups of underwater images col-
lected from distinct scenes are analyzed to determine both
our method’s effectiveness at being color-consistent for dif-
ferent camera viewpoints and our method’s ability to gener-
ate images conducive to visual SLAM feature detectors like
ORB.

All evaluation was performed using a single Nvidia RTX
3070 Ti GPU, requiring roughly two minutes of processing
time per image. This long inference time for our method
disqualifies it from being run in real-time as a preprocess-
ing stage for SLAM systems; however, our method still has
the potential to be applied as a preprocessing stage before
running offline localization and mapping algorithms such as
COLMAP.

4.1. Datasets

The Stereo Quantitative Underwater Image Dataset
(SQUID) [10] is a small-scale underwater image dataset.
The creators collected a dataset of images taken in differ-
ent locations with varying water properties, showing color
charts in the scenes. Moreover, to obtain ground truth, the
3D structure of the scene was calculated based on stereo
imaging enabling a quantitative evaluation of restoration al-
gorithms on natural images.

The Shipwreck Dataset [22], which we use in our eval-
uation, consists of continuous camera feeds and multi-beam
imaging sonar on four different shipwrecks in the Mediter-
ranean Sea (50-68 meters in depth).

4.2. Qualitative Single-Image Analysis

The image quality of the enhanced images after running
through our Wreck-tify pipeline can be analyzed using Fig.
10 above. In this figure, the raw underwater images were
captured in drastically different underwater environments.
This demonstrates our model’s versatility and adaptability
when applied to scenes with varying water parameters.

Quite immediately, one can see that the color distribu-
tion of the processed input images in Fig. 10 are similar to
those of the above-air images. The color of distant objects
seems to not fade as quickly as it did in the raw image. This
provides evidence that the pre-trained above-water diffusion
model of Wreck-tify is providing a useful above-water im-
age prior.

One interesting aspect of Fig. 10 to note is that the ex-
tracted depth from the RAW underwater images seem to be
quite blurry on some of the input images. This may be be-
cause the distribution of the underwater images that we are
evaluating are not in the distribution of images that UDepth
was trained on. It’s also interesting to see that at obvious
“cutoff” points in the raw images (i.e. at the edges of three
pillars in the third column) the predicted depth value ap-
pears to have a “smooth dropoff” that does not seem to be
consistent with the input image. This low-resolution and
potentially unreliable depth prediction step has definite ar-
eas for improvement as a component of our underwater im-
age enhancement pipeline.

We also compare the single-image output of our method
to the CLAHE color compensation baseline introduced in
Section 2. As seen in Fig. 11, CLAHE appears to have pur-
ple and red artifacts that likely do not reflect the actual in-air
color distribution of the shipwreck. In contrast, our method
seems to produce a more reasonable color distribution for
the image.

4.3. Quantitative Single-Image Analysis

To quantitatively evaluate our method compared to the
raw image and the CLAHE baseline, we evaluate corre-
sponding Underwater Image Quality Metric (UIQM) values
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Figure 10. Wreck-tify results on the Shipwreck Dataset [22] (three leftmost images) and the SQUID Dataset [10] (three rightmost images).

[23]. This metric comprises of three distinct components:
UISM which measures image sharpness, UIConM which
measures image contrast, and UICM which measures image
colorfulness. Each of these metrics are averaged and shown
in Table 1 for raw underwater images, CLAHE-processed
images, and Wreck-tify processed images.

Figure 11. Comparison of our method compared to the color com-
pensation baseline, CLAHE, on an underwater shipwreck image.

Table 1. Comparison of Underwater Image Quality Metrics
(UIQM) for underwater images, CLAHE preprocessed images and
Wreck-tify preprocessed images.

UISM UIConM UICM UIQM
Raw 4.78 1.27 1.09 1.19

CLAHE 5.68 2.10 4.40 1.34
Ours 4.64 1.87 5.62 1.12

The only metric where our method consistently outper-
forms the baseline is UICM (measuring colorfulness). Al-
though CLAHE outperforms our method in terms of image
contrast, our method directly improves contrast from the

raw image. Also, as seen in Fig. 11, the increased contrast
of CLAHE preprocessing seems to come at the cost of im-
age artifacts that are likely not consistent across viewpoint
changes.

4.4. Investigating Image Consistency

One of the core challenges we were trying to solve with
our Wreck-tify model was with keeping the color correction
consistent across consecutive frames in the same scene. To
qualitatively evaluate the performance of our method, we
ran our model on several frames of the same scene. For this
case, we set the water parameters to be the same across each
generated frame. We obtained the 9 water parameters via an
estimation technique from [20].

Figure 12. Example Wreck-tify output on the same scene.

As we can see in Fig. 12, our method seems to output
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images that are consistent with each other. However, for this
case, we noticed that our method consistently over corrects
in the red channel as the shipwreck is over saturated with
red color. We believe this is due to the water parameters
of our input being slightly off. For more examples of color
consistency and the effects of different water parameters,
refer to the appendix.

4.5. SLAM Evaluation

Since the image enhancement for each image takes ap-
proximately two minutes, we were unable to run complete
ORBSLAM3 on the shipwreck dataset. To evaluate the ef-
fectiveness of our algorithm we carried out ORB feature
matching and compared it to a CLAHE enhanced image as
shown in Fig. 13 and 14. Qualitatively, our results show
that our method has comparable ORB matches in the exam-
ples shown. Since these images were taken from succes-
sive frames of a video, CLAHE is able to perform relatively
well. We believe, however, that due to the color inconsis-
tency issues of CLAHE, our method would be better when
running a complete SLAM algorithm, and identifying loop
closures from varying viewpoints.

Figure 13. Comparison of ORB features matching between
CLAHE and our proposed method Example 1

5. Conclusion
Our paper addresses the significant challenges of Under-

water Image Enhancement (UIE) for applications in under-
water localization and mapping. To overcome these chal-
lenges, we introduced the Wreck-tify pipeline, which lever-
ages diffusion models pre-trained on above-water scenes.
By guiding the diffusion process with an understanding
of water parameters and light effects, our method aims to
produce images conducive to downstream visual SLAM
pipelines. Our approach shows improvements in image

Figure 14. Comparison of ORB features matching between
CLAHE and our proposed method Example 2

quality metrics, such as contrast and colorfulness, compared
to the raw image. Moreover, our method maintains color
consistency across consecutive frames for applications like
SLAM. While there are many opportunities for improve-
ments, such as decreasing inference time and improving
depth estimation, our work provides a step forward in ad-
dressing UIE challenges for underwater robotics.
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Appendix A: Pictures

Figure 15. Color consistency comparison between CLAHE and Wreck-tify on images of the same shipwreck from the shipwreck dataset.

Figure 16. Color consistency comparison between CLAHE and Wreck-tify on images of the same shipwreck from the shipwreck dataset.
Notice how CLAHE tends to have these artifacts of blue patches and tends to not be as consistent as our method.
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Appendix B: Different Water Parameters

Figure 17. The effects of different water parameters on the same raw source images. The water parameters are defined by 9 constants
where there are 3 constants for each RGB channel. As seen in the figure, the initialized water parameters greatly affect the quality of the
image enhancement.

11



Appendix C: Code Implementation
To view the code of our method and our

evaluation, please refer to our Google Drive:
https://drive.google.com/drive/folders/
1eYD1rIn3VRbFfLm- DRhclyFVmLX9FI7T?usp=
drive_link
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