Search And Rescue Autonomous System (SARAS)

Andrew Scheffer
drewskis @umich.edu

Joshua Symonds
Jjsymonds @umich.edu

Abstract—Search And Rescue Autonomous System (a.k.a
SARA), refers to a highly integrated, fully automated, and
functionally precise robotics operational system which aims to
guide a malfunctioning robot back to its destination. The goal of
the SARA is to autonomously locate a stranded “Blind” robot,
which is unable to read its LiDAR data, within an unknown
environment and return it to a home base. This rescue is
performed autonomously by a “Seeker” bot. The SARA system is
designed to be deployed in most of the complicated landscapes on
Earth. Space exploration and rescue missions are also possible.

I. KEYWORDS

Map: The originally unknown environment that both the
Blind bot and Seeker bot are placed within. For the purposes of
this report, this environment is an 4x3 or 3x3 grid of 62cm wall
segments that enclose the environment and act as obstacles
within it.

Home: A safe location in the map, defined as the starting
location of the Seeker bot.

Blind bot: A robot in an unknown environment without
access to its sensor data and therefore cannot safely navigate
the environment back to home alone. The Blind bot is still
able to send and receive information.

Seeker bot: The robot with its sensors fully functional
that must explore the environment, locate the Blind bot, and
navigate itself and the Blind bot back Home.

Potential Lost Area (PLA): Areas where the Blind bot
may be after the Seeker bot loses sight on it during the
RETURNING HOME TOGETHER state.

II. INTRODUCTION

Often in robotics, robots are used to perform tasks where
it would be unsafe for a human to be in the environment.
Common examples of environments unsafe for humans where
robots are used in our stead include deep space exploration,
deep sea exploration, areas with radioactive material, environ-
ments with inhospitable temperatures, etc. It’s common for
the environment these robots are in to not be known prior to
their deployment so its crucial for them to be able to operate
within an unknown environment. However, in the event of
a sensor malfunction, the robot may no longer be capable
of learning about its environment or localizing itself within
the environment. Due to this, if a robot encounters a sensor
malfunction while in these environments it can no longer
safely navigate its environment and is essentially stranded
since humans may not be able to retrieve the robot manually
and it cannot navigate to a safe location on its own. Sending
a second robot into the environment with fully functioning
sensors to help the malfunctioning robot navigate allows for us

Tianle Wu
perper@umich.edu

Kathryn Wakevainen
kwakev@umich.edu

to rescue it without compromising human safety. The Search
And Rescue Autonomous (SARA) System is able to be de-
ployed in an unknown environment where a robot with sensor
malfunction is stranded; it would then explore the unknown
environment, find the robot with sensor malfunctions, and
navigate both itself and the malfunctioning robot back to some
predetermined location safely.

III. RELATED WORK
A. Swarm Robotics

A swarm refers to a robotic system which controls multiple
physical robots. Although currently there is no standard im-
plementation libraries for swarms, we were inspired by Swarm
Robotic Behaviors from Dr. Schranz et al. Their description
of swarms consists of multiple homogeneously or heteroge-
neously interconnected robotics. Since individual robots have
processing, communication and sensing capabilities locally on-
board, they are able to interact with each other, and react to
the environment autonomously. [3] Although the controlling
concept is similar, there are still several fundamental differ-
ences between SARA system and swarms. First, in swarm,
each robot’s local behaviors incorporate interactions with the
physical world, including the environment and other robots.[3]
The Blind-bot in SARA is malfunctioned, which indicates the
possible loss of sensor and vision. Its designed to only be
able to communicate with the Seeker bot. Other environmental
factors would be handled by the Seeker bot. Second, a majority
of design principles for swarms inspired by biological fea-
tures, such as self-healing and self-reproducing.[3]] In SARA,
retrieving and rescuing are the only mission focused by the
Seeker. As for the Blind bot, it simply follows the command
and moving to the waypoints directed by he Seeker bot.

IV. METHODOLOGY

The SARA system requires for the Seeker bot beginning
by exploring the unknown environment using exploitative
Simultaneous Localization And Mapping (SLAM) to navigate
the environment. Once the Seeker bot has found the Blind bot
- defined by the camera on board the Seeker bot detecting the
AprilTag on board the Blind bot - the Seeker bot is to compute
safe paths for both itself and the Blind bot to navigate back to
its starting location without collision. The system is successful
when the Seeker bot is able to return to its starting position
and navigated the Blind bot to a safe location within 20cm of
the starting location. Fig. |1| is a picture of the Blind bot for
reference.

Fig. 1. Blind bot with fiducial markers attached

A. Architecture

This project involved the interaction of multiple complicated
components. Fig. 2] showcases specific system components of
the functional SARA system (including both the Seeker bot
and the Blind bot).

Seeker Bot Blind Bot

aaaaa

Fig. 2. System components of the Seeker bot and Blind bot

As shown, the architecture of the Seeker bot is necessarily
much more complicated than the architecture of the Blind bot.
This is because the Seeker bot is not only responsible for
maintaining it’s own position in the map using SLAM, but is
also responsible for updating the position of the Blind bot us-
ing our pose-estimation pipeline. The Seeker bot also contains
a main-behavior controller which effectively interfaces all of
these independent subsystems in a way that can accomplish
the mission objective of sending towing the Blind bot back to
a safe location.

The Blind bot architecture is very simple. Our team assumes
that the Blind bot still has access to reasonably accurate
odometry data and can follow relative waypoints based on its
odometry data. The way our system is structured (using the
towing method) allows for some error in the Blind bot’s motion
controller. This is because updates to the Blind bots position in
the configuration space are made relatively often. As shown,
the only communication interface between the Seeker bot and
Blind bot is a single TCP socket. Using a defined user protocol,
the Seeker bot can efficiently update the Blind bot about
its position in the world frame and send customized global
waypoints to the Blind bot’s motion controller.

B. Ideal Implementation State Machine

To facilitate the complexity of our project, we updated
the state machine to include extra states that encode the
behavior, shown in Fig. El The states INITIALIZING, EX-
PLORING MAP, RETURNING HOME ALONE (RETURN-
ING HOME), FAILED RESCUE (COMPLETED EXPLO-
RATION), and CRITICAL FAILURE (FAILED EXPLO-
RATION) encode the behavior of original Botlab where the
MBot explores an unknown environment using SLAM and
returns to its starting position upon successful exploration
of the entire environment. The states RETURNING HOME
TOGETHER, RETRIEVING, and SUCCESSFUL RESCUE
allow for the SARA system to rescue the Blind bot and
navigate it back to home. INITTALIZING is the starting state,
and CRITICAL FAILURE, FAILED RESCUE, and SUC-
CESSFUL RESCUE are the terminal states. If any nonterminal
and noninitializing state encounter a critical error such as an
obstacle collision or if attempts to navigate to an unreachable
location, it transitions into the CRITICAL FAILURE STATE
which is shown in the state machine as the dashed red arrows.
A successful trial of the SARA system will terminate in the
SUCCESSFUL RESCUE state.

FAILED
RESCUE

RETURNING
HOME ALONE

CRITICAL FAULURE

INITIALIZING EXPLORING

RETURNING
R HOME [~ | RETRIEVING
TOGETHER
SUCCESSFUL
RESCUE

Fig. 3. State machine for SARA System

Since INITIALIZING, EXPLORING MAP, RETURNING
HOME ALONE, FAILED RESCUE, and CRITICAL FAIL-
URE were covered within the scope of Botlab we will not
discuss the behavior of these states in extensive detail unless
an update has been made to the state.

1) EXPLORING MAP: Beyond the original implemen-
tation of EXPLORING MAP, when in this state we now
also constantly check if the Seeker bot sees the Blind bot.
If the Seeker Bot ever sees the Blind bot by identifying
the AprilTag on top of the Blind bot, it transitions to the
RETURNING HOME TOGETHER state. Otherwise if the
Seeker Bot explores the entire map without seeing the Blind
bot, it transitions into the RETURNING HOME ALONE state.

To make it so that the Seeker bot is more likely to see the Blind
bot while exploring the map, it periodically does a full 360°
rotation to observe its entire immediate environment with the
camera.

2) RETURNING HOME TOGETHER: RETURNING
HOME TOGETHER is the state that encodes behavior related
to navigating both the Blind bot and Seeker bot back towards
Home. When in this state, the Seeker bot starts by planning a
path back to Home using the map its created using SLAM
while exploring and A* path planning in the exact same
way as is done in RETURNING HOME ALONE in the
scope of original Botlab. The Seeker bot then begins driving
backwards along this path back home and periodically sends
its location to the Blind bot. During this, the Blind bot is
following the Seeker bot; it does this by travelling along the
waypoints published by the Seeker bot. If the Seeker bot
returns Home without losing the Blind bot, it has successfully
navigated itself and the Blind bot back to Home and then
we transition to the SUCCESSFUL RESCUE state. If the
Seeker bot ever loses sight of the Blind bot for a sufficiently
long time while driving towards Home, it abandons its path
back towards home and transitions into the RETRIEVING
state to find the Blind bot again. Since if the Seeker bot
loses sight of the Blind bot while driving Home causes for
us not to successfully complete the rescue from this instance
of RETURNING HOME TOGETHER, it’s important for the
Blind bot to be highly visible to the Seeker bot while in this
state. The Seeker bot drives backwards in this state so that the
Blind bot is maximally visible while it follows behind.

3) RETRIEVING: If the Seeker bot loses sight of the
Blind bot while navigating back Home in RETURNING
HOME TOGETHER, the Seeker bot must begin looking for
the Blind bot again. However, simply transitioning back to
EXPLORING MAP in order to resume exploration would not
work since the Seeker bot has already explored much of the
map at this point and this information would help it look for
the Blind bot more efficiently. We use the information we
already know about the map to help the Seeker bot look for
the Blind bot by tracking the potential lost areas (PLA) that
the Blind Bot may be in. PLA are areas within the explored
map that the Seeker bot has not looked at since it lost sight
of the Blind bot.

When the Seeker Bot transitions into the RETRIEVING
state, it initializes a PLA map of the areas within the known
SLAM map that it generated while in the EXPLORING
MAP state. While in the RETRIEVING state, the Seeker
bot constantly is checking the area that it can see for the
Blind bot. If it does see the Blind bot, it transitions back
to the RETURNING HOME TOGETHER state to attempt
to navigate itself and the Blind bot back home again. If
it does not see the Blind bot, it removes the areas it can
see from possible PLA and continues searching. It searches
the environment by choosing the best PLA to search and
navigates towards the PLA using A* navigation. The best
PLA is defined to be the PLA that minimizes
cost(PLA, Secker, Blind) = Dist(PLA, Blind)? +

Dist(PLA, Seeker)

where PLA is the coordinates of the PLA, Seeker is the
coordinates of the Seeker bot, Blind is the coordinates of the
Blind bot, and Dist(x,y) is the euclidean distance between
two coordinates. If the Seeker bot investigates all remaining
PLA and still does not find the Blind bot, it transitions into
the EXPLORING MAP state and begins exploring unknown
areas of the map again. It does this to accommodate for the
possibility that the Blind bot mistakenly navigated into an
unknown region of the map.

C. Robot Localization

The specs for four AprilTags that attached to each side of
the Blind bot are listed in the below table:

Purpose Size Family
Front 5.2cm x 5.2cm tagStandard41h12
Back 5.2cm x 5.2cm tagStandard41h12
Left 5.2cm x 52cm tagStandard41h12
Right 5.2cm x 5.2cm tagStandard41h12

During the process of communication, Seeker bot would send
waypoints to and Blind bot. However, since the waypoints
were generated in seek bot’s frame, we need to calculate
the homogeneous transformation matrix which convert the
waypoints from seek bot to Blind bot’s frame. The general
idea of conversion comes with the following formula:

TY TS =TY (1

where
W: world frame
S': Seeker bot frame
B: Blind bot frame

From the equation above, the transformation matrix Tgv could
be easily represented as the SLAM pose of the Seeker bot.
To generate the transformation from Seeker bot to Blind bot,
several under-processing calibrations are needed to compute
the fixed transformation metrics.

1) AprilTag detector readings based on pi camera:
While utilizing existed AprilTag detection library, [I] we
implemented our own conversion functions to achieve homo-
geneous transformation. The camera specification would make
a significant different while calibrating. The hardware specs
for pi camera module v2 was found on the official raspberrypi
website.[2]

2) Camera to Aprillag fixed transformation: In the phys-
ical design structure of MBot, the pi camera was attached
to a fixed position (facing front and centered) relative to the
Seeker bot. Therefore, during the transformation calculation,
this matrix would always be a constant term for us. We
developed the formula as below:

TV 15 17F =TV 2

where
W: world frame
S': Seeker bot frame
C': camera frame (attached to Seeker)

t: AprilTag frame (attached to still wall)

Similar to above steps, Tg‘/ refers to the SLAM pose of
Seeker bot, T refers to the calibrated AprilTag detector
transformation matrix, and 7}V is the AprilTag position in
the world frame. To limit the possible errors, we attached
the AprilTag to a steady wall, which is a still object inside
the frame. Then, to eliminate the consideration of rotation,
we faced the Seeker bot perpendicularly to the wall (also
AprilTag). To ensure the precision, we controlled the Seeker
bot to move forward and backward multiple times with random
distance, and collect the required data. Then, we took the
numerical mean of all the generated results to keep precision
and eliminate outliers.

Below is our approximation matrix for Camera to Tag:

1 0 0 2.04971996
0 1 0 1.15655385
0 0 1 0
0 0 0 1

3) Aprillag to Blind bot: Parallel to the transformation
from camera to AprilTag, AprilTag to Blind bot is also fixed,
as tags are attached to the head of MBot in four directions.
We developed the formula as below:

T TR T T =Ty 3

where
W: world frame
S': Seeker bot frame
B: Blind bot frame
C': camera frame (attached to Seeker)
t: AprilTag frame (attached to Blind bot)

Similar to the approach in camera to AprilTag, with addition
to T}, which refers to the SLAM pose in Blind bot’s frame.
During calibration, we fixed the Blind bot’s position. Then,
facing perpendicularly to the Blind bot’s front AprilTag, we get
the Seeker bot’s camera readings. Repeat those steps several
times for better accuracy. After the front face, we turned the
Blind bot into other three directions and followed the above
processes.

D. Robot Communication

In order to implement fast and reliable communication
between the two robots, our team had to design our own
user-facing protocol build on top of a more standard
Transmission Control Protocol (TCP). Our team used
a common server-client architecture to facilitate the
passage of messages between the robots. As illustrated
in Fig. f] the Blind bot acts as a TCP server that
accepts messages of type ROBOT_GLOBAL_POSITION,
ROBOT_GLOBAL_WAYPOINT or
ROBOT_NULL_TERMINATOR. The first two messages
encoded poses (of the form x, y, 6) whereas the
ROBOT_NULL_TERMINATOR message type signified

that a stream of waypoints should be sent to the Blind bots
motion controller. The Seeker bot acted as a client in this
framework that created and sent these messages to the Blind

bot server.
“Blind” Bot - Server

“Seeker” Bot - Client

==l

Blind Bot’s global position (x, y, 0)

\A/

Global waypoints (x, y, 0)

Fig. 4. Server-client TCP communication interface

E. Minimum Viable Product

Unfortunately, we were unable to successfully implement
the full scope of our planned project in the time frame we
were given. While we were able to fully implement our
AprilTag identification and use that data to localize the Blind
bot to the full extent of our original scope as well as fully
implement inter-robot communication, we were unable to
fully implement our high level logic for the RETURNING
HOME TOGETHER and RETRIEVING states of our ideal
implementation of the state machine.

1) RETURNING HOME TOGETHER: Instead of the orig-
inal scope of this state’s behavior, we implemented RE-
TURNING HOME TOGETHER using an iterative approach
to navigate both bots back home. Once transitioned into this
state we begin the following loop:

1: Seeker bot saves its current location, C,
if it does not have one saved

2: Seeker bot plans a path back towards home

and takes 1 step along this path

: Wait until Seeker bot has finished moving

4: If the Seeker bot is now a safe distance away
from C, publish C to the Blind bot

5: If C was published, the Blind bot travels to C

6: Wait until the Blind bot has finished moving
if it was sent C

7: If C was sent, reset C to prepare for the next iteration

W

2) RETRIEVAL: The scope of the RETRIEVAL state was
severely reduced. Instead of the original searching algorithm
to attempt to locate the Blind bot, the RETRIEVAL state now
simply plans a path to the last known location of the Blind bot.
Ideally, this would always allow for the Seeker bot to travel
to the Blind bot’s location, identify it, and transition back into
the RETURNING HOME TOGETHER state to bring both
bots back home. We do maintain that if the RETRIEVAL state
fails to locate the Blind bot, that it transitions back into the
EXPLORING MAP state to continue searching.

V. RESULTS
A. Quantitative Results

Perhaps the most crucial component of the SARA system
is the ability to accurately and efficiently update the position
of the Blind bot in the world frame. In an effort to quantify
the positional error of the AprilTag detection system, our team
compared the true position of the Blind bot along the x-axis
to the detected position of the Blind bot using our detection
system. To do this error quantification, our team physically
measured a starting distance from the Blind bot to the Seeker
bot, then used the Seeker bots odometry to measure a whole
set of linear distances from the Blind bot. This is acceptable
because the Seeker bots odometry was shown to be extremely
accurate for linear distances of less than 4 meters in previous
Botlab reports. Fig. [5| shows the results of this experiment and
indicate the positional error of our Blind bot detection pipeline
for a set of distances along one axis.

X-Axis Robot Position Error
8

6

4

K-Axis Error (cm)

50 100 150 200

Blind Bot X-Axis Position (cm)

Fig. 5. Position error of AprilTag based robot detection system along the
x-axis of the Blind bot

As seen in Fig. 5] the positional error of our system in-
creases as distance increases. This error, however, is extremely
promising for relatively short distances. These data heavily
influenced logic within our state diagram, suggesting the need
for a state to position the Seeker bot within an acceptable
distance of the Blind bot for an accurate detection.

Estimating the x, y position of the Blind bot is only half
of the complication of our detection system, however. The
Seeker bot must also attain very accurate headings of the Blind
bot in order for our proposed system to perform well. After
implementing our system, the heading error was measured by
comparing the true heading of the Blind bot (computed using
odometry) and the estimated heading given by our detection
pipeline. This heading error is plotted in Fig. [6] where theta
values of —90° to 90° are considered. During these trials the
position of the Blind bot was almost exactly 0.5m away from
the Seeker bot.

Fig. [6] depicts the heading error in two separate Blind bot
configurations. In the first configuration, the Blind bot only
contains one AprilTag (facing forward) indicating its heading.
As seen in the figure, the heading error in this configuration
starkly increases after the true robot heading surpasses —45° or

Angle Error for One Tag vs. Multiple Tags

== Errorusing only 1tag == Error With multiple tags

Angle Error in Degrees

-75 -50 -25 0 25 50 75

QOdometry Angle in Degrees

Fig. 6. Plot of the heading error of our detection pipeline for a Blind bot
with a single AprilTag and a Blind bot with multiple unique AprilTag

45°. This is because at higher angles, the AprilTag becomes
more out of plane with the camera plane, making it harder
to detect the corners needed to fit a homography. To combat
this error, our team decided to use multiple unique AprilTags
plastered on 4 sides of a cube atop the Blind bot. The benefit
of this configuration is that there will always be at least one
AprilTags that is a maximum of 45° out of plane with respect
to the camera. We found that this modification made the
detection much more accurate for larger angles and allowed
for the detection of the Blind bot in any heading. The average
heading error of the Blind bot in this configuration is 2.2°
which is more than sufficient for our applications.

When considering both the positional and heading error
of our detection system, we concluded that largely spaced
waypoint would allow the Blind bot to drift to an unsafe
location. Because of this, our team rejected the idea of simply
computing the pose of the Blind bot and sending it a list
of waypoints to an ultimate destination. Instead, we compute
intermediate waypoints that allow our detection system to
constantly correct itself. We call this approach the “tug and
pull” method.

B. Qualitative Results

Below are the Botgui pictures of showing exploring and
retrieving path.

At first, the exploration step. The yellow part indicates the
Seeker bot’s pose while the purple part is the Blind bot’s pose.
Note that while during exploration, the Seeker bot has not
detected the Blind bot yet. For demonstration purpose, we set
initial unknown Blind bot positions to (0, 0) to dramatize when
we don’t know the Blind bot’s location exactly, as shown in

Figs.

Show Map

0 show Laser
Show Particles
Show Path

Show PLA
Show Frontiers

Available Pose Traces
O odometry
SLAM_poSE
[clear

Exploration state:
~ nitializing
Exploring Map
Returning Home (alon¢
Returning Home (togeth
Retrieval
Completed successfull
Failed rescue
Failed Exploration

Fig. 7. Map exploration

When the Seeker bot first detected the Blind bot, it would
turn to face directly towards the Blind bot and send out the
first pose estimate and waypoint transformation to the Blind

bot. (Fig. [§])

Fig. 8. First detection

During the retrieving process, the Seeker bot would achieve
waypoints as inverse pose, performing backward movement
while it reached every setpoint. In this way, we can ensure
that the Seeker bot always has a positive detection for the
Blind bot and send out transformed waypoints to the Blind

bot. (Fig.

Fig. 9. Retrieving

Finally, both the Seeker and the Blind bot returned to the
same waypoint as the result of the retrieving process. (Fig.[T0)

Returing Home (alone)

Retrieval

Failed rescue

Failed Exploration

Rasat Fxaloration States

Fig. 10. Return to destination

C. Overview

Overall, the performance matches our expectation as all
the appeared errors were in acceptable range and most of
the rescue missions were successful. To evaluate the general
performance of retrieving, we perform the task several times
and record the number of success/failure in the below table.

Trial No. Success/Failure Time
1 Success 200s
2 Failure 00
3 Success 216s
4 Success 208s
5 Success 192s

The four successful missions, mentioned in the table above,
all occurred when the Blind bot was in a roughly similar
position to the one depicted in Fig. [§] with varying angles
and slightly varying positions. The failed trial noted in the
table above occurred when the Blind bot was placed in the
narrow passageway adjacent to the starting location. We found
that our system currently struggles with guiding the Blind bot
down narrow locations with sharp turns, which is something
that we believe we could easily improve if we had more time
to work on this project.

VI. DISCUSSION AND FUTURE WORK
A. Waypoint Accuracy

Since the Blind bot lost external sensors, such as LiDAR
sensor, we were getting the pose of the Blind bot from its
odometry readings. However, the odometry pose might be
inaccurate due to the possible change of hardware (e.g. the
wheel base difference) and calibration error. During retrieving
process, since we relied entirely on the odometry pose from the
Blind bot, the error would accumulate and made the waypoints
following worse and worse over time. Our current solution is
to reset the odometry pose each time the Blind bot reaches
the next waypoint.

There could be two solutions in the future that we can
implement to improve the waypoint accuracy. Firstly, we can
add more precise and stable hardware component for odometry
poses, such as a more accurate encoder and solid wheel
base. This could reduce the error during the calibration and
provide us a more accurate odometry pose. Secondly, we can

improve the algorithm with error adjustment. While the Seeker
bot detect the difference between the settled waypoint and
the actual location of the Blind bot, Seeker bot would send
additional commands to the Blind bot to adjust its position
closer to the waypoint.

B. Global Optimal Return Path

During the retrieving process, the Seeker bot would generate
the return path using Ax based on the current map it has
explored until it detected the Blind bot. However, this retrieve
path only guarantee the local optimal solution. There is a pos-
sibility that the global optimal path existed in the unexplored
part of the map. Fig. showed below indicates the current
problem.

Guiding A

Fig. 11. Shadowed gray part being unexplored map

In the future, we can program the Seeker bot to remember
the position it detected the Blind bot and then keep exploring
the whole map. After the map is fully explored by the Seeker
bot, it will move back to Blind bot and start the retrieving
process based on the entire map.

C. Aprillag Detection Sensitivity

Our current implementation of AprilTag detection has the
issue that the camera attached on the Seeker bot can only
detect the AprilTag within a limited rage, about 5 cm to 20
cm. If the camera is too close, the vision would be restricted
and only detected part of the AprilTag. If the camera is further
away, the detection would be inaccurate and the transformation
matrix feedback would ultimately impact the coordination
transformation.

One solution would be switch from pi camera to another
higher resolution camera, or fish-eye camera to increase the
horizontal detection range. Another more general generation
solution is to increase the amounts of detected AprilTags. More
AprilTags would improve the detection accuracy in general. In-
stead of attaching 4 tags around the Blind bot, we can actually
put 8 AprilTags in both ordinal and cardinal directions. In this
way, we can ensure at least 2 AprilTags were detected each
time to increase the camera-to-tag transformation accuracy.

D. Separate Return Location

Our current operation would guide the Blind bot to the
starting location of the Seeker bot. However, in reality, the

Seeker bot and the Blind bot might return to different loca-
tions, such as a separate maintenance site. In the future, we
can generate optimal return paths to an unique destination and
spread waypoints along that specific path for the Blind bot to
follow.

E. Multiple Bots Retrieving

For demonstration and time efficiency, current SARA sys-
tem only performs one-Seeker vs. one-Blind bot. In the future,
there might be situations which require multiple Seekers to
coordinate and multiple Blind bots to be rescued. SARA can
be extended for mutual communication among Seekers to
explore and build the map together, while each robot operates
its own rescuing mission. The cooperation among multiple
Seeker bots would make the searching and retrieving process
more efficiently.

F. Machine Learning Improved Pose Estimation

Using AprilTag detection for pose estimation on the Blind
bot is a straight-forward method. However, in the real-world
scenario, the malfunctioning robot might not be equipped with
AprilTags depends on the factory production. Therefore, for a
broader utilization of SARA system, the pre-trained machine
learning model built on the Blind bot’s physical structure
would be a wide-ranging application. One possible solution
would be training on the appearance of the Blind bot and
importing the model into the Seeker bot. With pi camera
(potentially a higher resolution camera) visual detection, the
Seeker bot could recognize the Blind bot and operate rescuing
process.

G. Depth Map Utilization

While the current usage of a LiDAR sensor fits most
of the working scenarios, it still suspects to the limited
detection range and the environmental noise. The utilization
of depth-camera generated depth map would model both
indoor and outdoor objects with high-resolution image, which
improves the accuracy of detection.

VII. REFERENCES
REFERENCES

[1] Aleksandar Petrov, Andrea F Daniele, and Rohit Suri.
lib-dt-apriltags. https://github.com/duckietown/lib- dt-
apriltags. 2021.

[2] Raspberry Pi. Buy A raspberry pi camera module 2. URL:
https://www.raspberrypi.com/products/camera- module-
v2/.

[3] Melanie Schranz et al. “Swarm Robotic Behaviors and
Current Applications”. In: Frontiers in Robotics and Al
7 (2020). 1SSN: 2296-9144. por: 10.3389/frobt.2020.
00036, URL: https://www. frontiersin. org/articles/10.
3389/frobt.2020.00036.

https://github.com/duckietown/lib-dt-apriltags
https://github.com/duckietown/lib-dt-apriltags
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/products/camera-module-v2/
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://www.frontiersin.org/articles/10.3389/frobt.2020.00036
https://www.frontiersin.org/articles/10.3389/frobt.2020.00036

VIII. APPENDIX
A. Demo Video Link
https://youtu.be/H2apOiehBUE

B. Code Repo Link
https://gitlab.eecs.umich.edu/drewskis/botlab

	Keywords
	Introduction
	Related Work
	Swarm Robotics

	Methodology
	Architecture
	Ideal Implementation State Machine
	EXPLORING MAP
	RETURNING HOME TOGETHER
	RETRIEVING

	Robot Localization
	AprilTag detector readings based on pi camera
	Camera to AprilTag fixed transformation
	AprilTag to Blind bot

	Robot Communication
	Minimum Viable Product
	RETURNING HOME TOGETHER
	RETRIEVAL

	Results
	Quantitative Results
	Qualitative Results
	Overview

	Discussion And Future Work
	Waypoint Accuracy
	Global Optimal Return Path
	AprilTag Detection Sensitivity
	Separate Return Location
	Multiple Bots Retrieving
	Machine Learning Improved Pose Estimation
	Depth Map Utilization

	References
	Appendix
	Demo Video Link
	Code Repo Link

