Treble in the Sheets: Optical Music Recognition

Christian Foreman
University of Michigan

cjforema@umich.edu

1. Introduction

Optical Music Recognition (OMR) is an often
overlooked field of research that investigates how to
systematically read music notation in documents using
computer vision. The goal of OMR systems is to
accurately and efficiently produce machine-readable
versions of sheet music by creating MIDI files,
MusicXML files, etc. Optical musical recognition is often
underestimated given the fairly small number of
characters used in standard music notation; however, the
difficulty of recognizing variations in notation
(handwritten, unconventional style, etc), the challenge of
reconstructing complicated music semantics, and the
nearly limitless ways of arranging many notes on a page
make this problem an active area of current research [1].

In recent years, the demand for OMR systems has
increased dramatically. Recently, initiatives have been
launched worldwide to digitize and distribute musical
works in an effort to make music and musical education
more accessible to everyone. The International Music
Score Library Project (IMSLP), for example, is currently
the world’s primary provider of sheet music worldwide
aiming to do just that [2]. Developing a way to not only
distribute image scans of sheet music but also to make
their structured representations available to the public
would yield extraordinary benefits for the musical
community. For example, the structured machine
representations of musical scores would allow for
content-based search techniques, giving conductors and
scholars alike a way to find versions of, identify, or
determine similarities in pieces of music. Additionally, the
digitization of music would also have various applications
in educating students about musical notation. These
applications (and plenty more) have been envisioned for
some time. The development of OMR technologies would
decrease the cost and tedium of the mundane tasks of
music transcription done by humans today and would also
provide everyone with better access to sheet music.

In an attempt to fulfill the need for this high demand,
this report presents a simplified optical musical
recognition system, modeled off the state-of-the-art OMR
pipeline from [1]. Our system takes images of sheet music

Ashwin Saxena
University of Michigan

ashwinsa@umich.edu

Andrew Scheffer
University of Michigan

drewskis@umich.edu

as input and outputs both an image of the annotated sheet
music and a MIDI file containing the machine-readable
representation of the sheet music. Our team used the
DeepScores V2 dataset [3] in conjunction with an
encoder-decoder (U-net) model to perform semantic
segmentation. This segmented image was then further
processed to reconstruct basic music semantics. This
process was evaluated using both qualitative and
quantitative test metrics.

2. Approach

2.1 Semantic Segmentation

The first stage in our OMR approach was to implement
semantic segmentation to identify and localize the various
musical elements in an input image of sheet music. The
U-Net is a machine-learning model that is capable of
performing this semantic segmentation by assigning each
pixel in the input image to a certain class. Because of this,
our team decided to use a basic U-Net model for our
segmentation task. The specific details of the model we
designed are shown in Figure 1. In this model, a
3-channel RGB image is inputted to the encoder, which
encodes a feature vector that is then upscaled by the
decoder to produce a 13-channel probability map that
determines each pixel’s “probability” of being in each
class (i.e. quarter note, treble clef, etc).

For training, our team preprocessed segmented musical
scores from DeepScores [3] to have 13 classes to use as a
ground truth. However, we found that the musical
notation was so small compared to the size of the image
that our model would often predict the entire image as
“background.” To combat this, our team instead sampled
an image window of size 256 x 512 uniformly at random
for every training image and used the image window as an
input to the U-net instead. This approach not only
drastically decreased training time but also improved the
accuracy of the model.

Similar to the training scheme outlined by Pacha et. al
[1], our team chose the cross-entropy loss function
throughout the training process with an adaptive learning
rate: starting at 0.001 and multiplied by 0.2 every five
epochs for a total of 50 epochs.



— 3x3 Convolution, RELU

— —_—
// /l 2x2 Max Pooling
Input 32 >
Image 4 " :
— —_
o /,/ -
64 !

Probability
Map

—_

- g -

7

2x2 Up-convolution, Stride 1

4

Figure 1: Visual representation of an encoder-decoder U-Net model architecture with computation flowing left to right. Green arrows
indicate 2D convolutions with 3 x 3 kernels, red arrows indicate 2 x 2 Max Pooling, and yellow arrows indicate 2 x 2 up-convolution.

2.2. Staff Identification

To determine what note each musical element
represented, our computer vision system needed a reliable
way to identify the staff lines. To identify the staff lines,
we began by doing a vertical scan of the input image and
determined the number of black pixels on each row of the
image. This process was similar to what Bainbridge and
Bell did to get a horizontal projection of an image [4].
Figure 2 shows an example figure obtained after running
this vertical scan staff identification on a test image. The
rows which had more black pixels than a certain threshold
(half the width of the image) were the location of the staff
lines. After obtaining the staff lines, the middle line was
identified via a simple loop so that a baseline could be
established for note placement.

Figure 2: Intermediate result of running vertical scan staff
identification to obtain the frequency of black pixels on each
row of the image.

The distance between any two lines on the staff was also
calculated during the vertical scan to aid us in note
placement.

2.3. Note Detection and Placement

After semantic segmentation and staff identification, the
next step was to place the recognized notes on the staff to
identify their tone. Using the semantic segmentation map
as input, our team used basic color filters to separate the
solid note blobs from the rest of the image. Once the notes
were separated, our team constructed image contours
from the note blobs using the “findContours” function
from the OpenCV python library. These contours were
used to construct bounding boxes (shown in Figure 3)
around every solid note blob in the segmented image.
Because the segmented image was the same size as the
original image, the bounding boxes could easily be
applied to the original image.

(S) .
D

b elg q
Ry A et gt

Figure 3: Result of applying note detection and placement to a
section of music.

The creation of these bounding boxes for each note was
convenient because they allowed for the relatively
accurate determination of where the center of each note
blob was. These centers are depicted in Figure 3 as the
green dots in the image. After the approximate center of
each blob was determined, both the section number and



note that it corresponds to could be determined. The
section number was found by determining which middle
line was closest to the note’s row.

To determine the actual tone of each blob (note), the
linear distance between the center-point’s row and the
corresponding section’s centerline was calculated. Our
team had the realization that every note was a unique
integer multiple of 2 of the line spacing from the
centerline. Therefore, since the average distance between
nearby lines in each section was already calculated
previously, all that needed to be done was divide the
distance of the blob from the centerline by half of this
spacing to get a unique note number.

While this technique works in principle, the issue of
pixel precision presented itself through testing. We found
that the % of the line spacing distance was on the order of
a few pixels which made the arithmetic quite inaccurate.
To combat this, our team investigated introducing a
distinction between “line notes” (notes that go through a
line) and “gap notes” (notes that do not go through a line)
in the semantic segmentation model. By introducing this
distinction, the critical distance between comparable notes
was effectively doubled which helped give much more
accurate predictions of note names. An example of this
pipeline in action can be seen in Figure 3.

From all of this image analysis, the end product of a list
of notes can be obtained by looping over every note blob
in the image, assigning it a section and note name, then
finally sorting the notes in each section based on their
center’s column number. Currently, this process only
works for note blobs which are all treated as the same
length; however, with more time, other elements such as
rests, eighth notes, etc could easily be added to the music
reconstruction algorithm.

2.4. Audio Generation

Once the list of notes is obtained, the notes are
individually converted to frequency values based on the
corresponding note through a simple for loop and lookup
table. Then, using the MIDIUtil python library, the list of
frequencies is converted to a .mid file with a constant
tempo, duration, and volume [5]. The resulting .mid file
can now be played and displayed on commercial audio
software like GarageBand.

3. Experiments

3.1. Data

Our team used the DeepScores V2 [2] dataset of
electronic sheet music to train and test our OMR pipeline.
The DeepScores dataset consisted of 1716 semantically
segmented images of sheet music for various instruments
with 135 individual classes of segmented musical
elements. To use this dataset for our image segmentation

task, the number of classes was distilled by recreating the
ground truth images using only 13 classes. Focusing on
the 13 most important music symbols made training our
model faster and allowed us to focus on the symbols that
appear in almost every music score.

JJJ D

oJll’#

Figure 4: An image of the main symbols we attempted to detect
in our model.

3.2. Metrics

Our team used several metrics, both qualitative and
quantitative, to determine the effectiveness of our pipeline
at performing optical music recognition. Qualitatively, the
output of the algorithm (an audio file) was compared to
recordings of the music to determine if there were a
reasonable amount of similarities. This is reasonable
because our model makes many simplifications in
transcribing music that make many quantitative methods
of analysis infeasible. We also use qualitative analysis as
a way of gauging the quality of the segmentation model.

Quantitatively, our team primarily used cross-entropy
loss and average precision to evaluate our segmentation
model. We decided to use cross-entropy loss because it
combines the negative log-likelihood loss and the softmax
loss which is very valuable for many-class segmentation
tasks. Additionally, the cross-entropy loss function is a
widely used loss function for skewed datasets in semantic
segmentation [6].

3.3. Qualitative Results

Since our project was done in several different stages,
there were several intermediate qualitative results. After
running semantic segmentation, we obtained an image
where each symbol was colored differently as shown in
Figure 5.

image: 13

In?lul Image Ground Truth Segmentation Map Predicted Segmentation Map
Figure 5: Result of running semantic segmentation on a section
of the score

After running through the steps of our model, we
obtained a MIDI file which was processed in Garageband
so we could hear our results, see Figure 6. We compared
the audio we generated for a score against the actual
recordings from the composers and found that the
melodies we recreated were pretty similar to the actual
recording. We did not get to recreate rhythms in this



project, however the sequence of tones matched the
original recording almost perfectly.

==
-
3
|
o ==
-
-
-
==
=

Figure 6: The MIDI file after converting the list of notes to
frequencies.

3.4. Quantitative Results

The semantic segmentation created the majority of the
quantifiable results for us, which include the average
precision for the classes in Figure 6, and the training plot
for the U-Net as shown in Figure 7. The average precision
across all classes was 0.81 which is almost 10 times better
than that of random chance (0.08).

.9999704959394963 void
.9901417477413665 lineQuarterNote
.9280797589250609 quarterRest
.9118321386950468 trebleClef
.9853271008869076 gapQuarterNote
.95828370111876 stem
.9870761622442161 sixteenthEighthBars
.8715664873186116 gapWholeNotes
.3165580270091363 lineWholeNotes
.801586204948396 gapHalfNotes
.8218623941173531 lineHalfNotes
.2930063873684463 sharps
0.6724167775832581 flats

verage Precision (all classes) = 0.81059287568

bR RERRR

>

Figure 7: The average precision for all thirteen classes, and the
average precision for all classes.

The cross-entropy loss of the model after 50 epochs is
almost 0.01 for both the training and the validation sets,
signifying the minimized errors in our prediction. We
were initially aiming at achieving a goal loss of about
0.05, but the model exceeded our expectations.

0.14

=——Training

0.1z Validation
wn
8
= 0.1
==
o
& o.08
o
=
[
v 0.06
a
o 0.0
ey
L]

0.0z -y

e P,
R T A T R
[+]
5 5 15 25 35 1 55
Epochs

Figure 8: The training plot for the U-Net for 50 epochs depicting
an initial sharp decrease in loss followed by a steady decrease of
loss to a value of about 0.01

|

Figure 9: The numbers above represent the number of pixels the
symbol is away from the baseline (centerline) of the staff and
the corresponding note assignment based on the distance.

4. Implementation

Our team used PyTorch, an open-source deep learning
framework, in the implementation of this project. We
adapted and referenced the semantic segmentation code
provided in HW5 of EECS 442 (Computer Vision) to
build the U-Net responsible for -classifying music
notation. Our idea to use a U-net was inspired by Patch et.
al. [1] because they compared various models for
semantic segmentation, and the idea to do a vertical scan
for staff identification was inspired by Bainbridge and
Bell [4]. We used the python OpenCV library as a way to
generate filters and contours in images. Finally, our team
utilizes the MIDIUtil python library to produce midi files
in python. Any additional tasks, including but not limited
to image preprocessing, splitting, recombination, staff line
identification, note placement, audio generation, and
figure creation were work done by ourselves.

5. Conclusion

Our team was able to perform optical music recognition
for certain symbols at a high degree of accuracy, however,
more work needs to be done to include the limitless ways
music can be represented. For example, being able to
distinguish between the different lengths of notes (whole,
half, eighth, sixteenth, etc.) would allow us to recreate
rhythms and have more interesting results to listen to.
Moreover, currently, the model only works well with
scores formatted in the same way as the DeepScores V2.
With a more diverse dataset that synthesizes different
sources, and includes handwritten scores, we could add in
the ability to convert and recognize virtually any score.



References

(1]

(2]

(3]

(4]

(5]

(6]

A. Pacha, J. Haji¢, and J. Calvo-Zaragoza, “A
Baseline for General Music Object Detection with
Deep Learning,” Applied Sciences, vol. §, no. 9, p.
1488, Aug. 2018, doi: 10.3390/app8091488.
“International Music Score Library Project Petrucci
Music Library,” IMSLP. [Online]. Available:
https://imslp.org/wiki/Main_Page. [Accessed:
26-Apr-2022].

L. Tuggener, Y. P. Satyawan, A. Pacha, J.
Schmidhuber, and T. Stadelmann, “The
DeepScoresV?2 dataset and benchmark for Music
Object Detection,” 2020 25th International
Conference on Pattern Recognition (ICPR), 2021.
Bainbridge, David & Bell, Timothy. (2001). The
Challenge of Optical Music Recognition. Computers
and the Humanities. 35. 95-121.
10.1023/A:1002485918032.

M. C. Wirt, “Markcwirt/MIDIUtil: A pure python
library for creating multi-track MIDI files,” GitHub.
[Online]. Available:
https://github.com/MarkCWirt/MIDIUtil. [Accessed:
25-Apr-2022].

S. Jadon, “A survey of loss functions for semantic
segmentation,” 2020 IEEE Conference on
Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), 2020.



