
Automated Discourse Identification in
Argumentative Essays

Nikki Ratanapanichkich
Computer Science and Engineering

University of Michigan
Ann Arbor, USA
nratan@umich.edu

Andrew Scheffer
Computer Science and Engineering

University of Michigan
Ann Arbor, USA

drewskis@umich.edu

I. PROBLEM DESCRIPTION

Automated Essay Scoring (AES) is an often misunderstood
field of research that investigates how to systematically parse
and score essays written in an educational setting. The goal
of AES systems is to accurately and efficiently assess essay
elements to provide students with quick and reliable feedback
on their writing skills. This feedback can provide crucial infor-
mation for students iterating on their writing skills, especially
for those from disadvantaged backgrounds with limited access
to a knowledgeable instructor or tutor. AES Systems require
a breadth of natural language processing techniques in order
to provide adequate feedback; these systems must measure
spelling, coherence, factual validity, argument soundness, and
even discourse structure. This complexity of developing accu-
rate AES systems make it an active area of current research.

In recent years, the demand for AES systems have increased
dramatically. Recently, initiatives have been launched world-
wide to digitize and distribute anonymous student essays in
an effort to make essay feedback and writing education more
accessible to everyone, especially those from low-income,
minority backgrounds, who lack sufficient resources to help
them improve their writing abilities. It is beneficial to design
fast, effective, and affordable solutions for automated grading
of student-written essays in contrast to current AES systems
which are very expensive. The development of AES technolo-
gies would decrease the educational barrier for students to
improve their writing skills, and would allow them to iterate
on their work in a fraction of the time.

In an attempt to fulfill the need for this high demand of
affordable AES systems, this report presents a customized
Discourse Segmentation Model, a critical component of the
AES pipeline. Discourse Segmentation requires the accurate
categorization of different argumentative elements in essays,
which allows downstream AES systems to analyze essay
structure, factual basis, etc. Our system takes argumentative
essays as input and outputs a sequence of tokens indicating
the corresponding argumentative element for each word of the
essay. This task is challenging for many reasons. First, student
essays are often riddled with misspelled words. Additionally,
long essays present a challenge to language models that need
to form contextual dependencies across large amounts of text.

Our team uses data from the PERSUADE Corpus [3] in
conjunction with an encoder transformer model to perform
this sequencing task. This process was then evaluated using
both qualitative and quantitative test metrics.

II. RELATED WORK

In a similar vein to our topic, Taghipour and Ng were the
first to explore a neural approach to Automated Essay Scoring.
This approach takes a sequence of the one-hot vectors of
all the words in a given essay as input to the model. The
model first uses a convolution layer, used to extract n-gram
level features, which captures the local textual dependencies
between words in an n-gram. These features are then passed
to a recurrent layer composed of a Long-Short Term Memory
(LSTM) network [5].

We also took inspiration from work done with the SciBERT
model, which was not used for student essays, but did conduct
a similar task for scientific articles. SciBERT, based off of the
BERT model, conducts scientific discourse tagging in order
to improve the efficiency of parsing through scientific articles.
SciBERT uses the BERT transformer which has a limited sized
input and makes use of a moving-window approach in order
to capture all the relevant context [1].

Our model improves upon this prior research by proposing
a new model to use in place of BERT. In our project, we
are instead using the BigBird transformer, because BigBird is
more optimized for processing long input sequences. Since
the data that we are dealing with contains essays that can
be very long in length, BigBird allows us to avoid using the
moving-window approach while still being able to capture all
the relevant contextual information in the input.

III. DATASET AND PREPROCESSING

Our team used a subset of the PERSUADE Corpus collected
by the GSU Learning Agency Lab [3]. Exactly 15,594 student
essays (at the 6th-12th grade level) were used for training
and evaluation in this project. Each essay in the PERSUADE
corpus was annotated by human raters for argumentative and
discourse elements using a double-blind rating process. In
an effort to characterize the quality of this dataset, our team
focused on quantitative metrics of the essays.

Fig. 1 depicts the number of words present in all essays
in the dataset, averaging around 421 words. Along with
essay length, our team also visualized the total number of
words categorized as each discourse tag, shown in Fig. 2. As
expected, the Evidence tag is actually associated with more
than 50% of all words in the argumentative essays! We also
decided to determine the average Flesch reading ease score
(70.77417), average number of words per sentence (21.0393),
and the average number of sentences per essay (21.0393).

Fig. 1: Histogram of num words in student essays (µ =
421;σ = 191)

Fig. 2: Distribution of tag occurrences over all essays

The first major task of this project was converting the raw
data from the PERSUADE Corpus to a format that was suitable
for our task. Each element of the dataset consisted of a full
student essay accompanied by a short list of the discourse
elements of that essay, with corresponding word indices. For
example, the short list could contain ”Lead, 0 1, Claim, 2
3 4”, meaning that words 0 and 1 in the essay are of the
lead element, and words 2, 3, and 4 are of the claim element.
This dataset was suitable for our task because it provided a
corresponding discourse element for each word, which is also
what our model intended to do.

Our team decided to convert these lists into tag sequences
of the same length of the original essay, where each word
corresponds to its own tag; that is, essay[i] would have the tag,
tags[i], where i is a word index. Additionally, we expanded the
amount of tags to include B-[tag] and I-[tag] for all discourse
elements. The reason for this is to establish a reasonable
baseline (discussed in Section V) and allow our model to infer
relationships about the beginnings of discourse sequences. At
the end of this preprocessing stage, we successfully assign all
words in all essays their ground-truth tag/ID. A list of all 15
IDs/tags is shown in Table 1.

Table 1. All possible tags for discourse elements

ID Discourse Tag
0 O
1 B-Lead
2 I-Lead
3 B-Position
4 I-Position
5 B-Claim
6 I-Claim
7 B-Counterclaim
8 I-Counterclaim
9 B-Rebuttal

10 I-Rebuttal
11 B-Evidence
12 I-Evidence
13 B-Concluding Statement
14 I-Concluding Statement

When we preprocess the essays, we deliberately avoid
converting them to all lowercase characters, because words
that begin with uppercase characters are more likely to be
the beginnings of a sentence or discourse element. Therefore,
we expect that keeping the input data text in its original case
improves the performance of the word tagging as it is easier
to identify the start of different discourse types in an essay. As
a final preprocessing step, our team filters out extraneous and
unreadable characters in the dataset that appear to be prevalent.

IV. METHODOLOGY

One popular application of Natural Language Processing is
text-tagging, commonly used for tasks such as Part of Speech
(POS) tagging and Named Entity Recognition (NER). We
believe that the problem of identifying different components
of student essays (i.e. leads, arguments, evidence, etc) may
be mapped directly to a case-specific text-tagging problem. In
this formulation, each word in an input text will be mapped
to a corresponding tag listed in Table 1.

At a high level, our team proposes a three-step process for
student essay component tagging:

1) Data preprocessing and data structure loading
2) Perform text tagging by fine tuning a pre-trained large

transformer architecture, BigBird
3) Generate prediction strings for argumentative essays

A. Transformer Architecture

Transformers have become a popular choice for various
Natural Language Processing (NLP) tasks, especially for text-
tagging tasks such as Named Entity Recognition (NER), Part-
of-Speech (POS) tagging, and even sentiment analysis [7].
This popularity largely stems from their inherent ability to
capture long-term dependencies and contexts in text. When
compared to more traditional NLP techniques such as LSTM
or GRU architectures, Transformers tend to outperform these
models at capturing long-term dependencies [6]. This is largely
due to how every word in an input sequence is processed
together instead of sequentially, leaving little room for infor-
mation loss.

We propose the use of the transformer architecture, BigBird
[8], for our student-writing tagging task. We choose this
specific transformer architecture for our task largely because
of its focus on processing long sequences of input. This model
uses a “sparse-attention mechanism” to combat the quadratic
space/time complexity problem of subsequent models, con-
necting all input nodes to output nodes. This sparse-attention
mechanism is largely based on random attention connections
that allow the model to process input sequences up to 4096
tokens long (∼8x longer than previously possible by similar
hardware). As seen in Fig. 1, this max input length should
be perfectly sufficient for our task, given that the max essay
length is less than 2000 words.

A diagram of our model architecture is shown below in Fig.
3, with data flowing from the bottom (the entire input essay
text) to the top (word-based discourse tags).

Fig. 3: Architecture of modified BigBird token classification
model with customized head

B. Training Process

Fine-tuning the BigBird model for our given task was the
major source of work over the past few weeks and required

significant computational resources. As seen in in Fig. 3, the
process starts by first tokenizing the input sequences of text
into sub-word feature vectors that can be easily fed into the
BigBird model. Our team found that sub-word features were
ideal for our task because of their resilience to misspelled
words and new vocabulary. This process is a pre-trained
component of the architecture downloaded from HuggingFace.
The tokenizer pads all token sequences to the same length and
returns an attention mask which allows us to send batches
of essays into the transformer even when the essays in each
individual batch likely have different lengths.

Next, we download a BigBirdForTokenClassification model
architecture with pre-trained weights that is in “sparse-
attention” mode for large sequences. Additionally, we set the
hyperparameter attention prob dropout = 0.1, set 12 attention
heads, and define 12 hidden layers. This model also uses a
position-embedding matrix to encode the relative position of
each token in the sequence. In each training step, we pass the
input-ids, attention-masks, and the corresponding labels to the
BigBird model and update the gradients based on the cross-
entropy loss of the output predictions. To compute the final
accuracy of the model, we take the argmax of the predictions
matrix (of size (|W |, |C|) where |W | is the number of words in
the sequence and |C| is the number of tag-classes). We only
compute accuracy at the active labels in a batch (not labels
that were padded). We also decided to use grad-norm gradient
clipping as referenced in [4].

C. Baseline For Evaluation

As a baseline for our proposed method, our team redesigned
a previously implemented NER tagger using Hidden Markov
Models (HMMs). This model is more naive due to the Markov
assumption used in the implementation of HMMs. We show
that the context and attention offered in modern transformer
architectures drastically outperforms the HMM technique in
student essay component identification tasks.

V. EXPERIMENTS

After a lot of effort, our team was able to successfully create
and train both an HMM baseline and our modified BigBird
transformer architecture described in IV. We split the dataset
into training/validation/test sets in an 80/10/10 split. In this
section, we will present and perform an analysis of our results.

A. Baseline

As described previously, our baseline for our word-tagging
problem is a Hidden Markov Model trained on the corpus of
data in the training set (roughly 12474 essays). This model
then is tuned on the validation set (roughly 1558 essays) to
find proper hyperparameters. In our research, we found that
the values of kinitial = 1, ktransmission = 1, and kemssion

= 0.5, maximized our accuracy on the validation set. After
hyperparameter tuning, the model was run on the test set,
which yielded an overall accuracy of 0.567 over all tags (B-
Claim, I-evidence, etc). Fig. 4 depicts the confusion matrix of
the HMM model after training.

Fig. 4: Confusion Matrix of Trained Hidden Markov Model

As seen in this figure, the HMM did a decent job of
identifying evidence-based words in the text. The main aspect
of confusion was in the concluding statements. We believe
that this confusion may stem from the fact that many con-
clusion statements reiterate the evidence presented in the
rest of the paragraph. Additionally, one can see that the
model is often incorrectly identifying claims vs. evidence
statements on average. This is somewhat expected with the
naive assumptions this model makes: basing the predictions of
specific words largely based on the frequency count of those
words in the corpus. Finally, this model seems to suffer at
identifying the differences between claims/counterclaims and
evidence/rebuttals as seen by the nearly uniform confusion
matrix above for those sections. This shows that the model
is not capturing the deeper meaning or themes of different
sections of the text. Overall, this model is inherently flawed
because it assumes the probability of word-tag pairs is directly
correlated with their respective frequencies in the training set.

B. BigBird Model

Now we will go over the results of fine-tuning the BigBird
transformer architecture to our word-tagging task. Our team
used Google Colab to train our network over the training
set (14034 essays) for a total of 5 epochs with 4 essays per
batch. Using GPU acceleration and vectorized code, our team
managed to get the runtime per epoch just under 1.5 hours, for
a total training time of 7.3 hours. We used a decaying learning
rate with the initial value of 2.5×10−4 for the first epoch that
decreased by a factor of 10 every subsequent epoch. This was
chosen to hopefully localize in on a more global-minimum of
the loss function. Please refer to Fig. 5 for a history of the
model’s training loss and training accuracy over time.

Over 5 epochs, our training accuracy reached roughly
86.55% and the training loss reached just under 0.38. Our
final accuracy on the test set (of 1560 essays) came out to
be 0.7955, a significant improvement over our baseline. This
accuracy metric was calculated by dividing the total number
of correct predictions by the total number of predictions.

Fig. 5: Training Loss/Accuracy for BigBird over 5 epochs

Fig. 6, showcases the confusion matrix for our transformer-
based architecture.

Fig. 6: Confusion Matrix of Trained BigBird Model

As seen in this confusion matrix, our transformer model
significantly outperforms the baseline in all categories. No-
tably, this model does a significantly better job at localizing
discourse elements that are based on location within a para-
graph. For example, this model outperformed the baseline at
predicting the Lead tags and Conclusion tags. This model still
suffers slightly at differentiating between claim and evidence
elements; however, unlike the baseline method, this model
correctly predicts a “Claim” tags most often when the true
label is “Claim.”

C. Quantitative Results

Table 2 is a quantitative comparison between the baseline
HMM model and the modified BigBird transformer model.
Additionally, out of interest, we also compared both models
to an ”Only Evidence” model that only predicts the tag
”Evidence” for every word in the essays. In this table, we
are comparing using two metrics: the accuracy, and macro-
F1 score. We chose to use macro-F1 because it will still
reflect true model performance even when the classes are
heavily imbalanced (in our case towards evidence tags). As
seen in the table the BigBird Model significantly outperforms
the HMM both in accuracy and macro-F1 score demonstrating
that it is able to accurately distinguish between more classes

than the HMM. We presume that the HMM has a much
lower macro-F1 score because of its direct reliance on biased
training data. Here, we also can see that the accuracy of the
HMM model barely outperforms the extremely naive ”Only
Evidence” predictions in overall accuracy, further supporting
the use of the transformer architecture described in this paper.

Table 2. Comparison between HMM and BigBird models

Test Accuracy Test Macro F1-Score
Only Evidence 0.5287 0.0864

HMM 0.5674 0.3947
BigBird Model 0.7955 0.6645

D. Qualitative Results

Our team also wanted to investigate some specific case
examples of where the Transformer architecture outperformed
the Hidden Markov Model to get a better sense of what was
being learned. To do this, we created a tool to visualize the
tags on top of the original sentences. In Fig. 7, we compare
two identical pieces of text run through both taggers.

Fig. 7: Selected comparison of HMM and BigBird at essay
conclusion

In this figure, the Transformer model can be seen creating
a prediction that is much more reminiscent of the actual text.
We can infer that the transformer is taking advantage of words
such as “if . . . then” to deduce that the words belonging to
the first sentence are likely part of a rebuttal. Interestingly, the
transformer architecture also seems to be segmenting the text
on a per-sentence basis (which is very representative of the
dataset it was trained on).

Overall, as seen in the overall accuracy and confusion
matrices, the transformer successfully incorporated context-
clues to create an effective word-tagging system.

VI. CONCLUSION

Our team was able to perform automated discourse seg-
mentation, a key component in AES systems, to a high
degree of accuracy using a novel modified transformer-based
architecture designed for long inputs. Our team believes that
there are many opportunities for future improvements in this
work. One potential improvement would be the inclusion
of additional models into the pipeline (such as LongFormer
[2]) to obtain more accurate predictions. More sophisticated
post-processing techniques may be required to combine these
different methods. One potential way to actually combine the
models could be to add their corresponding word probabilities
as a naive combination.

Additionally, if given more time, our team believes that it
would be worthwhile to investigate performing beam-search
on the returned probability matrix from the transformer. This
would be more effective than taking an argmax over all
possible tags. Since BigBird is a transformer, theoretically, this
shouldn’t help significantly; however, since BigBird is based
on randomized connections, the context information may not
be completely uniform, making beam-search potentially ben-
eficial.

Overall, throughout this project, our team learned a sig-
nificant amount about the implementation of NLP systems.
Seemingly small tweaks (i.e. stripping newline characters,
making all input lowercase, etc) can have a drastic impact on
the performance of the system. Additionally, we learned that
more complex models are significantly harder to interpret. It
was clear to reason why the more simplistic HMM failed at
some segmentation tasks, however, pinning down exactly went
wrong in the transformer architecture was much harder to do.
Finally, the effort to create a reasonable and simplistic baseline
can provide a significant amount of value when developing
NLP systems, especially when determining if your model is
better than a naive solution.

REFERENCES

[1] Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language
model for scientific text. pages 3615–3620, November 2019.

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The
long-document transformer, Dec 2020.

[3] Scott A. Crossley, Perpetual Baffour, Yu Tian, Aigner Picou, Meg Benner,
and Ulrich Boser. The persuasive essays for rating, selecting, and
understanding argumentative and discourse elements (persuade) corpus
1.0. Assessing Writing, 54:100667, 2022.

[4] Nitish Keskar and Bryan McCann. Ctrl: A conditional transformer
language model for controllable generation.

[5] Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated
essay scoring. pages 1882–1891, November 2016.

[6] Ashish Vaswan and Noam Shazeer. Attention is all you need. 31st
Conference on Neural Information Processing Systems, Dec 2017.

[7] Krzysztof Wrobel and Krzysztof Nowak3. Transformer-based part-
of-speech tagging and lemmatization for latin. Proceedings of the
Second Workshop on Language Technologies for Historical and Ancient
Languages, page 193–197, Jun 2022.

[8] Manzil Zaheer and Guru Guruganesh. Big bird: Transformers for longer
sequences. 34th Conference on Neural Information Processing Systems
(, Jan 2021.

